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Chaos and evolution 
Regis FerriQre and Gordon A. Fox 

T he idea that nonlinear dy- 
namics (Box l), and es- 
pecially deterministic chaos, 
play an important role in 

biology has become more influen- 
tial in recent years. Chaos has been 
suspected, and sometimes firmly 
documented, at the biochemicaL2, 
organismal and population516 
level. Nonlinear changes in pheno- 
types, gene frequencies or popu- 
lation sizes must affect the evolution 
of character traits (and clades), 
and the ways in which we study 
evolution. 

In linear systems, only two kinds 
of long-term dynamics are poss- 
ible: either the system stays con- 
stant, or it grows or declines at a 
constant rate. A familiar ecological 
example is the model for density- 
independent population growth: 

N,, = 4 
the population stays constant if 
r=l, and grows or declines at the 
constant rate r, if r is greater or less 
than 1, respectively. 

Intuitively, this sort of model 

There is growing interest in applying 
nonlinear methods to evolutionary biology. 
With good reason: the living world is full 
of nonlinearities, responsible for steady 

states, regular oscillations, and chaos in 
biological systems. Evolutionists may find 
nonlinear dynamics important in studying 

short-term dynamics of changes in 
genotype frequency, and in understanding 

selection and its constraints. More 
speculatively, dynamical systems theory 

may be important because nonlinear 
fluctuations in some traits may 

sometimes be favored by selection, 
and because some long-run patterns 

of evolutionary change could be 
described using these methods. 
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suggests that most biological systems are nonlinear: popu- 
lation size and other biological variables clearly vary over 
time without either disappearing or growing infinitely. 
Indeed, most biological models - whether describing physi- 
ology, changes in gene frequencies, population growth or 
interacting populations - are nonlinear. Such nonlinear sys- 
tems can have several kinds of behavior not possible in lin- 
ear systems, including cycles, quasicycles or chaos (see 
Box 1). ‘Nonlinear dynamics’ refers to these dynamical 
regimes that can occur only in nonlinear systems, and terms 
such as ‘nonlinear methods’ refer to special methods for 
analyzing them. 

There are four areas where nonlinear dynamics may 
prove important to evolutionists. First, because the evolution- 
ary process-as modeled in population genetic equations -is 
nonlinear, one can use nonlinear dynamics theory to analyze 
gene frequency change in response to deterministic forces 
like selection. Second, because many physiological and de- 
velopmental mechanisms are nonlinear, the outcome of se- 
lection can be limited (or expanded) in ways that would not 
be anticipated without a nonlinear perspective. Third (and 
more speculatively), selection may sometimes promote non- 
linear dynamics, including chaos, in some traits. Fourth (and 
still more speculatively), one can use nonlinear approaches 
to consider how adaptive peaks change as external conditions 
change. 

Nonlinear dynamics and the genetics of populations 
Even in simple models, gene and haplotype frequencies, 

and mean fitness, can change cyclically or chaotically. When 
such dynamics occur, Wrightian adaptive topographies no 
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longer exist, because no fitness 
function7 can be maximized. Per- 
haps more important, the tradi- 
tional problem of explaining the 
maintenance of genetic diversity 
can disappear. We briefly review 
some results, and then consider 
their implications for evolutionary 
biology. 

Simple genetic models 
Complex dynamics can occur 

even under constant selection. 
Stable limit cycles - in gene and 
haplotype frequencies and mean 
fitness - can occur even in two- 
locus, two-allele models with con- 
stant selection and epistasis*ag, and 
in one-locus, two-allele models 
with fertility selectionlO. 

Recombination may have var- 
ied effects in multilocus models, 
depending on selective regimes or 
genetic systems. For constant 
selection, complex dynamics are 
most likely to occur under inter- 
mediate recombination rates”. 
This is because Fisher’s ‘funda- 
mental theorem of natural selec- 

tion’ applies when recombination rates are high (because 
the loci evolve almost independently) or low (because 
chromosomes behave like single genes). Populations there 
fore move up fitness gradientsn. On the other hand, in a 
haploid frequency-dependent model, intermediate recombi- 
nation rates tended to stabilize dynamic@. Clearly the 
problem of the dynamical consequences of recombination 
is still a wide-open field. 

Models with more ecological realism 
Cycles and chaos occur easily under frequency- and 

density-dependent selection. Gavrilets and Hastings14 re- 
cently showed that chaos can occur over a wide range of 
parameters in a simple frequency-dependent model that 
generalizes a number of earlier models. Previous workrJ5 
demonstrated complex dynamics in frequency-dependent 
models, but only for limited ranges of parameter values or 
when fitness was a complicated function of genotype fre 
quencies. When parameters were near values where the 
dynamics change qualitatively (bifurcation points), Gavrilets 
and Hastings found intermittency - alterations between 
periods that appear to be chaotic and stable - as well as long 
chaotic transients in their model. Both cycles and chaos also 
can occur in models that allow gene frequencies and popu- 
lation size to varyic-18. 

Complex dynamics - and the coexistence of multiple 
genotypes - may thus be more likely in more ecologically 
realistic models. Quasicycles arise in a model of the evolu- 
tion of gynodioecyig; because the parameter space was only 
partly explored, chaos may also occur in this model. A host- 
pathogen coevolutionary model by May and Anderson20 
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Box 1. Types of nonlinear dynamics 
Three types of dynamics relevant to biology can only occur in nonlinear 
systems: limit cycles, quasicycles and chaos. A dynamical system may 
be ‘attracting’ -that is, the system resumes its dynamics after a per- 
turbation - under these regimes as well as under equilibria1 dynamics. 

Systems on limit cycles repeat themselves regularly. Neighboring 
points on a limit cycle stay near one another; if one population is at the 
high point in this period-two cycle when another is at the low point, they 
will stay exactly out of phase. 

Quasicycles resemble limit cycles, but the periods of the oscil- 
lations vary; the system never precisely repeats itself. Neighboring 
points remain near one another in quasicycles. Quasicycles often occur 
when periodic subsystems (e.g. physiological cycles) are coupled. 

Chaotic oscillations do not have regular periods or amplitudes. 
Neighboring points tend to separate from one another at an expo- 
nential rate. This is why one cannot predict the system’s behavior for 
more than a short time, even though the underlying mechanisms are 
deterministic. 

shows a wider range of behavior. If population size is con- 
stant at carrying capacity, selection is frequency-dependent, 
and (for plausible parameter values) can lead to equilibria, 
cycles or chaos. If population size is regulated by the dis- 
ease, both gene frequency and population size can fluctuate 
cyclically or chaotically. Finally, HolP showed that when 
population dynamics are cyclic or chaotic, peripheral popu- 
lations may maintain more genetic variation than they would 
under equilibria1 dynamics. 

implications for population genetic studies 
Adding population dynamics to population genetic mod- 

els not only makes complex dynamics more likely; it also 
points to the danger of the traditional assumption that popu- 
lation size can be ignored. A recent phenotypic model of the 
evolution of conspecific brood parasitism22 showed that the 
dynamics of phenotype frequencies and population size gen- 
erally depend on one another, except in the special case of 
populations tending to stable equilibria. 

These studies show that chaotic gene frequency changes 
are possible, but we do not know whether they actually occur. 
This issue can only be resolved empirically23. Unfortunately 
there are no extant data sets adequate to test such a hypoth- 
esis for even a single population. At present we can point 
only to the possibility of chaotic change in gene frequencies. 

It should be possible in the coming years to change this 
situation through carefully designed studies. These would 
need to use short-lived organisms to obtain sufficiently long 
time series, and genotypes would need to be readily identi- 
fiable. Knowledge is growing rapidly of specific loci and their 
effects in organisms like Caenorhabditis, Drosophila and 
Tribolium. Methods for identifying genotypes are becoming 
faster and more affordable. Methods for testing hypotheses 
about dynamics are becoming more sophisticated5,23. For 
these reasons, we believe that well-designed laboratory stud- 
ies of genetic dynamics may soon be within reach. 

These results suggest caution in the application of opti- 
mality approaches. The central assumption of these models 
- that some quantity such as mean fitness is maximized - 
may often be violated. Evolutionary stable strategy (ESS) ap- 
proaches have a similar difficulty because ESSs are defined 
as joint, constrained local optima. This does not negate the 
potential usefulness of optimality and ESS approaches in 
studying selection - only in predicting its outcome. 

Nonlinear dynamics and gene substitutions 
In the previous section, we discussed ways in which non- 

linear dynamics can promote the coexistence of multiple 
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genotypes. However, nonlinear genetic dynamics can also 
promote gene substitutions. 

Complex spatial patterns - including spiral waves and 
chaos-can develop in nonlinear models of host-parasitoid 
system+. Without a spatial component to the model, in- 
efficient parasitoid genotypes fail to invade the population. 
Surprisingly, adding a spatial component creates new non- 
linearities that allow mutants to invade, depending on where 
they are introduced. These invasions can lead to complete 
replacementzs. Thus, the emergence of spatial patterns de- 
termines the outcome of natural selection. This result calls 
into question the definition of ‘invasibility’, which underlies 
much of population genetic theory. 

Even without spatial dynamics, we speculate that there 
may be times when genotypes that are usually less fit can 
invade a chaotic resident population. This is because the 
complex shape of the chaotic attractor may include small 
regions where the net effect of the invader-resident inter- 
action favors the ‘less fit’ mutants. Invasions may only suc- 
ceed when the resident population is on such a vulnerable 
part of its attractor; they would not succeed otherwise. This 
speculation requires that the invaders appear in sufficiently 
large numbers such that their initial dynamics are nonlinear 
at first (they are approximately linear if initial numbers are 
very small). 

Can the nonlinear dynamics underlying phenotypes 
sway selection? 

The nonlinear dynamics of biochemical, cellular, physio- 
logical, neuronal and ecological systems can limit or en- 
large the range of phenotypes reachable by selection, Small 
changes in parameters governing the system can cause it to 
qualitatively change its dynamics, that is, to ‘bifurcate’, say, 
from a steady state to a stable limit cycle (Box 2). 

Bifurcations occur in physiologically plausible models 
of the cell cycle26, ventilation rate and many other physio 
logical processes3. In the cell cycle model, changing a rate 
parameter can cause the system to move between cycle 
periods that vary chaotically and periods that are con- 
stant26. In the ventilation model, changing a rate parameter 
can cause the system to move between normal and arrhyth- 
mic breathings. There is some empirical evidence that these 
bifurcations also occur in real physiological systems?. 
Bifurcations also occur in models of population dynamics; 
an ongoing series of experiments with Tribolium beetles has 
shown that a biologically based model of population dynam- 
ics can predict bifurcations that can be induced in the lab- 
oratory27. Thus, bifurcations may be built-in to some basic 
physiological and demographic processes. 

We suggest that bifurcations can sometimes correspond 
to abrupt changes in the range of phenotypes reachable 
by selection, regardless of whether they are bifurcations in 
physiological or population dynamics. We outline the sense 

Box 2. What are bifurcations? 
To understand what bifurcations are, consider one of the simplest nonlinear popu- 
lation models, the logistic map: 

For r< 3, the system reaches a steady state. At this ‘bifurcation point’, the stable 
equilibrium suddenly becomes unstable, and a stable limit cycle of period 2 simu!- 
taneously appears. Further increases in rcause a sequence of bifurcations in which 
the stable limit cycle of period n becomes unstable and simultaneously a new 
stable cycle of period 2n appears. As rpasses the value 3.57, a chaotic attractor 
appears. Even within the chaotic region, there are bifurcation points; for example, 
there are values of 3.57 < r< 4 for which there are stable limit cycles. 
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in which we believe that bifurcations may sometimes affect 
selective outcomes, and the sense in which this kind of effect 
may be similar regardless of whether the traits involved are 
physiological, developmental or demographic. 

As a first example, consider a physiological trait with 
a stable cycle of period IT, governed by a parameter k. 
Selection might favor a slight increase in p with the same 
period. Near a bifurcation of the underlying physiology, sub- 
stitution of an ‘increased-k’ allele would not have this effect: 
increasing k causes a change to a cycle of different period 
(or to chaos). As a second example, consider a trait related 
to the intrinsic rate of population growth r, such as fecun- 
dity at some age i, bi. Again, selection might favor a slight 
increase in bi if the increase led to a larger steady-state popu- 
lation, but not if it led to the onset of population cycles. 
Near a bifurcation of the population dynamics, this favored 
phenotype cannot be achieved. 

This purely verbal argument is supported by a theoretical 
study of the evolution of iteroparity versus semelparity**Jg. 
Ferriere and Gato (Box 3) found that selection can favor one 
or the other life history, depending on whether bifurcations 
in population dynamics occur along a trade-off curve 
between adult survival and juvenile recruitment. 

Bifurcations also restrict the applicability of some widely 
used models. Quantitative genetic approaches assume that 
fitness varies smoothly as a function of small allelic sub- 
stitutions. This is not necessarily true near bifurcations of 
the physiological or population dynamics (and need not be 
true in nonlinear systems anyway). Optimality models are 
also likely to be misleading near such bifurcations, because 
fitness may not vary smoothly as a function of phenotypic 
value, and because some phenotypes may not be reachable. 

Is chaos sometimes favored by selection? 
If physiological or population dynamics are sometimes 

chaotic, it seems natural to ask whether this is because chaos 
is caused by selection. Two distinct cases are possible: chaos 
itself may be favored by selection, or it may be a by-prod- 
uct of selection on another traitso. We cannot presently dis- 
tinguish between these hypotheses for any instance of 
biological chaos, but it is worth speculating about at least 
two kinds of mechanism suggested by Conrad31 as candi- 
dates for adaptive chaos. 

First, chaos may be adaptive in some cases of defense 
behavior. An example may occur in the behavior of foraging 
birds32. Bird vigilance can be characterized by the durations 
of scans (when the bird lifts its head and looks around) that 
alternate with feeding periods. Data from some species 
whose vigilance is likely to be anti-predatory (sandpipers, 
doves, finches) show typical features of chaos, such as high 
short-term predictability of scan and interscan durations, 
which decays exponentially over time. The long-term un- 
predictability may prevent waiting predators from timing 
their attack accurately, while the short-term predictability 
permits animals feeding in groups to improve their joint vigi- 
lance. This coordination also allows a whole flock to reduce 
the amount of time spent without surveillance by any of its 
members. 

Second, chaos can provide maintenance and disturbance 
dissipation mechanisms: systems whose parts vary inde 
pendently can be more efficient and persistent than tightly 
coupled systems. For example, chaos may help to prevent 
entrainment in neural networks. Physiologically plausible 
models of neurons can exhibit chao.9. It is conceivable that, 
without chaos, either very dull pacemaker activity, or highly 

Box 3. Nonlinear dynamics and the evolution of itero- versus semelparity 
Ferriere and Gatto28 studied the evolution of adult survival S and recruitment to adulthood F’, when there is a trade-off between them (bold curves in figures below). 
What phenotype (S,P) is the ESS? To each resident phenotype pair {S,,, Pres) we can attach an invasion boundary - a curve separating phenotypes able to out- 
compete the residents from those outcompeted by the residents. If the invasion boundary of a phenotype is just tangent to the trade-off curve, that phenotype is 
an ESS. 

The dynamics of the resident population greatly affect the evolutionary outcome. Ferriere and Gatto used a delayed Ricker model that assumes overcompensatory 
density dependence (but other densitydependent functions would give similar results): 

where X;“” denotes the adult resident population size at time t. 
The shape of the invasion boundary is thus crucial, and it depends on the dynamics of the resident population37. It is a straight line if the dynamics are equilib 

rial, and a strictly convex curve if the dynamics are nonlinear. The invasion boundary of any resident phenotype passes through {S,,,f,,} itself, and through 
(S=l,P=O). 
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If the trade-off curve is entirely contained in the region of stable equilibria (see figure a), the ESS is semelparous. If part of the tradeoff curve is in the region of 
nonlinear dynamics [which may happen for a different value of age at maturity (Y (b)], the ESS is iteroparous. Finally, a polymorphism can be an ESS only if at least 
one of the phenotypes involved belongs to the region of complex dynamics (c). 
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explosive global neural firing patterns, would emerge. Neural 
chaos may maintain the functional independence of different 
parts of the nervous system; it could also provide a basis for 
adaptive chaos in behavior. 

Another important example was recently provided by 
Schaffer and collaborator.9. In challenging the view that 
group selection should make chaos rare in natural popu- 
lations34J5, they considered a spatially subdivided metapopu- 
lation whose local dynamics are governed by the Ricker or 
logistic map, plus local noise. This metapopulation was sub 
ject to stochastic global perturbations. Metapopulations with 
chaotic dynamics persisted longer than those with equilib- 
rial or cyclic dynamics; cycles generally produced the least 
persistent metapopulation. These results are due to chaos’ 
property of sensitive dependence on initial conditions, which 
promotes asynchrony and decoupling among local popu- 
lations, increasing metapopulations’ ability to withstand 
perturbations. 

Adaptive chaos: could it really evolve? 
If there are sometimes long-term group-level advantages 

to chaotic population dynamics, are there ever short-term, in- 
dividual advantages? A life history study28J9 (Box 3) showed 
that selection on several demographic parameters should 
often lead to chaos, especially in late-maturing species and 
when selection is constrained by steep trade-offs between 
traits. 

Should we expect chaotic or stochastic mechanisms to 
be favored, where temporal variability is advantageous as 
a basis for defense behaviors or for maintenance and dis- 
turbance dissipation? Chaotic mechanisms may more often 
evolve for several reasons. 

l Biological systems are often intrinsically nonlinear-the 
‘raw material’ for generating chaos is already present. For 
example, population dynamics are generally nonlinear be- 
cause of density dependence. Chaos may thus be an easy 
way to generate variability and uncertainty. 
l By contrast, with random noise, chaos involves high short- 
term predictability that may also be selectively advan- 
tageous. It may be more difficult for organisms to achieve 
the same ends with autocorrelated stochastic processes. 
l Even if stochasticity is intrinsically generated by a biologi- 
cal system, it may not produce sufficient levels of variability. 
Because chaotic systems have sensitive dependence on in- 
itial conditions, chaos can serve to magnify the internal ran- 
domness of the system. 

Chaos may be selectively favorable in some circum- 
stances, but cycles or equilibria are surely favored in others. 
It is time, however, to abandon the prejudice that selection 
always favors constancy at the biochemical, organismic and 
population levels. 

Nonlinear dynamics in long-term evolution 
The evolutionary walk along a limited-mutation 
pathway 

In the discussion above, we considered evolution in the 
neighborhoods of evolutionary attractors - cycles, quasi- 
cycles and chaotic attractors - that did not change. But 
changes in selection and in the availability of mutant geno- 
types can affect both the location and the qualitative nature 
of these attractors. Recently there has been much interest 
in using nonlinear methods to study these long-term evolu- 
tionary changes, 

Metz and his collaborators36 have analyzed how ESSs 
come into being and disappear, and how they become (or 
cease to be) attracting, as the environment changes. An ESS is 
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Box 4. Lyapunov exponents and their use for evolutionists 
Lyapunov exponents provide a way to identify the qualitative dynamics of a system 
-for example, deciding whether it is chaotic. They can also be used to ask whether 
a system is invasible. This is because they describe the rate at which neighboring 
trajectories converge or diverge (if negative or positive, respectively) from one another 
in orthogonal directions. If the dynamics occur in an n-dimensional system, there 
are n exponents. 

Ecologists may notice that Lyapunov exponents are similar to the eigenvalues 
used in local stability analysis. In fact, they are generalizations of these eigenval- 
ues. Instead of describing what happens near a fixed point, Lyapunov exponents 
describe what happens near an entire trajectory. 

To ask whether a system is chaotic, we find the Lyapunov exponents of the 
linearized system near a trajectory. Since chaos can be defined as divergence (on 
average) between neighboring trajectories, the presence of a positive exponent is 
diagnostic of chaos. 

To ask whether a population is invasible, we study a new system: the resi- 
dent population’s dynamics embedded in an additional dimensron (the number of 
invaders). Information on invasibility is given by the exponent corresponding to the 
new dimension. Positive values mean that the system diverges on average from 
the old attractor in this direction: the number of invaders will grow. Since Lyapunov 
exponents give the rates of divergence or convergence, this exponent is the long- 
term stochastic growth rate of the invader population. 

a combination of traits that, once established in a population, 
cannot be outcompeted by any other feasible phenotypes. 
Their theory assumes clonaI reproduction or haploid genetics, 
and that mutations occur randomly but only one at a time 
(thus response to selection is strictly mutation-limited). 

This theory also assumes that the sign of a simple func- 
tion - the invader’s long-term stochastic growth rate - de- 
cides the outcome of an attempt by phenotype Y to invade 
the set of resident phenotypes X This growth rate is cal- 
culated as the dominant Lyapunov exponent of the resident 
community dynamicssrJ8 (Box 4). Clearly a population 
growth rate like this is not a fixed quantity - it depends on 
the environment and on the composition and dynamics of 
the resident population. Therefore, it can change if the resi- 
dent population evolves. 

The central point of this theory is that the meanders of 
evolution reflect the randomness of mutation, but major 
trends in evolving traits are deterministic. These trends are 
determined by ‘singular phenotypes’ (Box 5) which move 
and change their nature (bifurcate) as the environment 
changes. 

Bifurcations and long-term evolution 
Metz et al. classified the ways that singular phenotypes 

can bifurcate in trait space. For example, an ESS (attracting 
or not) can be created or can disappear; a monomorphic 
ESS can become polymorphic, or vice versa. The analyses do 
not only concern ESSs: Lyapunov-unstable singular points 
can also occur. These points are like saddle-points: popu- 
lations initially approach them, but are subsequently repelled 
from them. These points can bifurcate into attracting ESSs, 
or vice versa. 

Such bifurcations are local: they occur when the local 
stability of a singular phenotype changes. Global bifurcations 
can occur as well, when a singular phenotype abruptly ap- 
pears or disappears (Box 6). One way to interpret local bi- 
furcations is as models for long-term changes in the genetic 
composition of a population, while global bifurcations could 
describe speciation and extinction. A study of a predator- 
prey-resource model, revealed a global bifurcation pattern 
that resembles a succession of stasis, punctuated equilibrium 
and gradualism39. 

This approach to evolutionary theory has important 
strengths. It provides an explicit (and explorable) connection 
between ecology and long-term evolution. Perhaps more 
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Box 5. Siar phenotypes and adaptive dynamics 
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X (resident trait) 

Here, we illustrate the Metz et al. theory of adaptive dynamic9for the case where 
the resident type can be described by one variable. The time unit of the dynamics 
is that taken to lose or fix a new mutation. Whether the mutant with trait Y can 
invade the resident with trait Xis determined by the sign of the long-term stochastic 
growth rate of the invader- the dominant Lyapunov exponent (Box 4) of the X-type’s 
dynamics37.3. 

s,(Y) > 0 : the mutant increases in frequency 
s,(V) < 0 : the mutant goes extinct 

What happens where s,(Y) changes sign? Phenotypic singular points are the 
points where the line separating the negative from the positive values intersects 
the 45” line (see double-headed arrows in figure). An ESS is a special case of such 
a singular point. Using linear stability analysis of s,(Y) around a singular point x, 
Metz et al. classified the properties of singular phenotypes. Defining: 

c - 1 aZs,(y) 

I*-2 axay Y=X=X 

and 

1 c - J2s,(V 
22 - ; ay2 

y=x=x 

they showed that: 

l If cz2 4 0, Xis a local ESS; if c22 > 0, X is an ‘Evolutionarily Unstable Strategy’ 
(EUS). 
l ESSs and EUSs can be either attracting (c,,l c,,) or repelling (c,,Z c,,). 
l Attracting EUSs are surrounded by mutually invasible phenotypes, and the same 
applies to approachable ESSs if c12 < 0. 

Box 6. Local and global bifurcations 
in long-term evolution 

Metz et al.36 studied a simple case where two phenotypes compete, with 
Lotka-Volterra dynamics governed by the parameter E. For small E, the singular 
point is an attracting ESS. As E increases, the resident population becomes in- 
vasible by nearby mutants, and then stable polymorphisms can develop. Further 
increases in c change the shape of the mutant invasion rate still more, allowing 
additional phenotypes to invade, and others to go extinct. These local bifurcations 
occur when the local stability of a singular phenotypic point (Box 5) changes%. 

Global bifurcations occur when singular phenotypes appear or disappear. 
When global bifurcations occur, the property of singularity is passed on to quite a 
different phenotype. This can occur in response to gradual changes in parameters, 
and in the long-term stochastic growth rate. Thus, wild changes in these two quan 
tities are not required to generate a pattern reminiscent of punctuated equilibrium. 

important, it encourages the study of how evolutionary and 
ecological changes on different timescales are interrelated. 

On the other hand, there are still important limitations 
to the theory. First, it is not yet explicitly genetic, so it can 
only be treated as heuristic. Second, the dominant Lyapunov 
exponent may not always be an appropriate invasibility cri- 
terion. Finally, continuous mutations (instead of one-step 
mutations) are known to influence the evolutionary walkdo. 
Thus, there are important challenges ahead for this theory. 

Conclusion 
No simple dynamical system can be expected to capture 

the intricate nature of long-term evolution41. Attempts in 
this direction have nevertheless begun to appear in the lit- 
erature. These mostly rely on verbal arguments, are not 
convincing and mainly show how one can misinterpret the 
ideas of nonlinear dynamics theory, by treating mathemati- 
cal ideas as vague metaphor+44. We think that the jargon 
of nonlinear dynamics can obfuscate, rather than clarify, 
when divorced from its mathematical roots. 

On the other hand, ideas and methods from the theory 
of nonlinear dynamics may prove to be important to evolu- 
tionists. We have examined several distinct issues in the re- 
lationship between nonlinear dynamics and evolution. One 
issue is the effect of complex population and genetical dy- 
namics on adaptation. When these nonlinearities operate, 
evolution cannot be assumed to be an adaptive process, and 
wrightian fitness landscapes are not defined. Standard evo- 
lutionary models may thus be more limited in their scope 
than is generally appreciated. The second issue is whether 
short-term nonlinear dynamics at the phenotypic level can be 
adaptive. Chaos is not necessarily an indicator of pathology; 
under some circumstances, natural selection may favor 
chaotic phenotypes. A final issue is whether large-scale eve 
lutionary patterns can usefully be studied using methods 
from nonlinear dynamics. An initial theory attempting to do 
this is still in its early stages of development, but may prove 
important in organizing thinking about how ecology, popu- 
lation genetics and macroevolutionary patterns are inter- 
connected. 

Thus, chaos and other nonlinear phenomena can be im- 
portant to evolutionists in several ways. Adding nonlinear 
analysis to the evolutionists’ toolkit will require a ground- 
ing in the appropriate quantitative methods. We believe the 
potential benefits are well worth the effort. 
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Is mitochondrial DNA 
a strictly neutral marker? 
J. William 0. Ballard and Martin Kreitman 

M itochondriaf genes have Variation and change in mitochondrial because of its linkage to the rest of 
been employed exten- DNA (mtDNA) is often assumed to the genome. Selection need not 
sively in evolutionary conform to a constant mutation rate even be acting on the mitochon- 
studies because of their equilibrium neutral model of molecular drial genome itself: any maternally 

uniparental mode of inheritance, evolution. Recent evidence, however, inherited factor could potentially 
high rate of evolution and relative indicates that the assumptions underlying influence haplotypic diversity. One 
simplicity of enzymatic amplifi- this model are frequently violated. The such factor is the maternally in- 
cation using ‘universal’ primerG. mitochondrial genome may be subject herited rickettsia Wolbachiu, de- 
They have also been widely used in to the same suite of forces known to be scribed below. The vast majority 
population studies owing to the acting in the nuclear genome, including of studies employing mtDNA as 
general belief that gene frequen- hitchhiking and selection, as well as an evolutionary marker have not 
cies are governed primarily by forces that do not affect nuclear variation. attempted to test the basic as- 
migration and genetic drift, and Wherever possible, evolutionary studies sumptions of the neutral model: a 
that most of the variation within involving mtDNA should incorporate constant mutation rate, a station- 
a species is selectively neutral. statistical tests to investigate the forces ary allele frequency distribution, 
However, factors other than gen- shaping sequence variation and evolution. and a correlation between poly- 
etic drift are expected to be impor- morphism levels and divergence. 
tant determinants governing the We will first review the evidence 
fate of mutations. The lack of nor- William Ballard is at The Field Museum, Roosevelt Rd 
mal recombination in mitochon- at Lake Shore Drive, Chicago, IL 60605.2496, USA; 

leading to the widespread belief 

Martin Kreitman is at the Dept of Ecology and that mtDNA conforms to the neu- 
dria means that each genome has tral model, and then discuss recent 
a single genealogical history and Evolution, University of Chicago, 1101 E57th St, 

all genes will share that history. 
Chicago, IL 60637, USA. studies in humans, rodents and 

Drosophila, where the observed pat- 
Any evolutionary force acting at terns of variation have been tested 
one site will equally affect the history of the whole molecule. against these neutral theory predictions (Table 1). 
Thus, the fixation of an advantageous mutation by selection, 
for example, will cause the fixation of all other polymor- Evidence for neutrality 
phisms by a process known as genetic hitchhikings. Even A review of the literature leads us to conclude that the 
the quickly evolving noncoding origin of replication region widespread acceptance of the selective neutrality of mtDNA 
cannot be assumed to have neutral allele frequencies follows from a series of plausibility arguments connecting 
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